[image: image1.png]<l I3

Learning Activity Management System




Integration Authentication





Draft Version 1.1
Author: Fiona Malikoff



LAMS INTERNATIONAL
20 June 2005
Revision History

	Name
	Date
	Reason For Changes
	Version

	Fiona Malikoff
	20 June 2005
	Initial Draft
	1.1

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	


Contents

11
Introduction


11.1
Scope


11.2
What need to be designed


11.3
Constraints


22
Basic Implementation


22.1
URL Authentication


32.1.1
Header Fields or URL Parameters


32.1.2
User Logout


32.2
Webservice Authentication


32.3
Secret Key


53
Improvements


53.1
Hashing


53.2
Security - SSL for URLS


53.3
Security - WSS for Webservices


53.4
Security - Callback to Trusted Server


63.5
Caching User/LAMS Session details in Moodle


73.6
Third Party SSO Solution




1 Introduction
1.1 Scope
This document outlines the authentication and security methods for a course management system / LAMS integration e.g the Moodle and LAMS integration.
1.2 What need to be designed
The authentication and security methods will to cover both URL and webservice calls. 

The initial (basic) implementation selected for the Moodle/LAMS integration is a method of weak authentication. It uses a secret key to create a hash value on the Moodle side and the receiver regenerates the hash to ensure that the request has come from a trusted server. This is the simplest form of security that can be implemented without using certificates and/or SSL.

The hash value is to be calculated using SHA-1. This requires that the output be encoded in some way before transmission. In Java, we need to select an encoding/decoding method but in PHP, the code that creates the hash converts it to a hex format. For simplicity, we will stick to the hex format as done by PHP.
1.3 Constraints
The initial implementation does not use public key or certificate methods, as not all users of Moodle and LAMS may have access to these items. This greatly restricts the security that can be applied. Where sites require a higher level of security, some improvements to the initial implementation are given.

2 Basic Implementation
2.1 URL Authentication
The following description gives the steps for Moodle and LAMS interaction. The same principles apply to other course management systems such as Blackboard.
Step 1: User logs into Moodle and does various Moodle only things.

Step 2: User clicks on a button/link which needs a URL call to LAMS. The call is initially made to a PHP based URL, running under Moodle.

The PHP code gets the Moodle server id, user id and date/time and calculates a SHA-1 hash on the Moodle server id, user id and date/time + secret key (with the fields added in alphabetic order) . It then puts all three values in the URL call. The PHP code then redirects to the proper LAMS call.

The values in the server id, user id and date/time fields should be converted over to lowercase and strip any leading or trailing spaces before calculating the hash. This is in case one of the servers munges the field values slightly with respect to case or spacing. Hopefully this won’t be an issue with Apache or JBOSS but just in case we use another server in the future which does have a problem.
On the LAMS end, the Login module will intercept the call. The interception should happen "automatically" as the JBOSS/Tomcat server will detect the lack of a session with the browser. 

Yoichi is to investigate how this can be done – at present the normal login module is only called after the login form is presented and we need it to be triggered before the login form is presented.

The Login module will get the Moodle server id, user id and date/time and recalculate the hash (it can look up the secret key using the Moodle server id - each server is to have its own unique key). The session is then setup in LAMS.

If the Login module cannot find the Moodle details, then it should revert to using the standard form based authentication. This is to support users who come in to LAMS directly.

Once logged in, the call will be executed. If the extra fields had been in the URL, then the login module should have stripped off the extra fields if possible.

Step 3: User returns to Moodle and clicks on another button/link which needs a URL call to LAMS. The call is initially made to a PHP based URL, running under Moodle.

The "internal" Moodle call will then calculate the hash as before and redirect to LAMS. The JBOSS/Tomcat server should detect the browser session and not trigger the Login module. Therefore the extra parameters will be ignored.

Recalculating and sending the hash each time makes it easier for the Moodle side (as it won't have to track the users that are logged into LAMS). These details are needed for managing the Moodle logout
2.1.1 Header Fields or URL Parameters

It would be preferable to put the id fields, date and hash in the http header so that the values cannot be seen by the user. However putting the fields in the header does not seem to be possible so we will put them in the URL. 

We are trying to call from server to server, whereas the normal behaviour is for header fields to be set before being sent to the client. The HttpRequest object (in Java) does not support setting arbitrary header fields, and it is assumed that PHP will be the same.

If we can find a way to put them in the header in a reliable manner (and is likely to work in the future, not just now) then we will switch to put them in the header.
2.1.2 User Logout

If a user logs out of the “primary” login system (e.g. Moodle) and another user logs in again in the same browser instance, LAMS will need to detect the change of user. If the browser is not closed, then the session will still exist. Therefore whenever a URL call is received from the other system, LAMS will need to check the user id against the user id in the session. If they are different, the old user must be “logged out” and the new user “logged in”.

It would be nice if the other system could notify LAMS of the user logout. This would allow LAMS to invalidate the session. But it is not possible to easily and reliably detect the logout – either in the other system or in LAMS, so LAMS must be able to fall back to its own session timeout and check the current session for the appropriate id rather than completely relying on the other system.
2.2 Webservice Authentication
Webservices will use a similar authentication method to URLs.
A user logs into Moodle and does something that requires Moodle to call a webservice. This calls a function in a PHP file (e.g. lib.php).

The PHP function finds creates a SHA-1 has based on the Moodle server id, date/time and secret key. The secret key will be the same key as URL secret key. The function puts the server id, date/time and hash into the XML document as parameters and then calls the LAMS webservice.

On the LAMS end, the LAMS webservice will check recalculate the hash and checks the hash in the XML document. If the test passes, then LAMS processes the webservice call.

Next time the webservice is called, the same checks are done - the hash is calculated and the three fields including in the call. The checks are done every time a webservice call is executed.

2.3 Secret Key
The secret key is likely to be done via the LAMS community website. This needs to be determined in conjunction with Ernie.

Initially the secret keys will be stored in LAMS in the database. In Moodle, it will also be kept in the database. The location in Blackboard is yet to be determined.
The other alternative is to keep the keys in the filesystem. This would be preferably where the system is to be administered on a server with a secure area in the filesystem. However both Moodle may be downloaded and run by users that are unable to set up a secure area for the secret key files. For this reason, we will start with the value in the database.
It would be preferable to have this as a configuration option.

3 Improvements
This section outlines some improvements could be made to the authentication and security arrangements.
3.1 Hashing
A minor improvement would be to do the hash over all the parameters in the URL call as well as the server id, user id, date/time fields and the secret key. This may be used to checked that individual values haven’t been modified in transmission However this may be unreliable – particularly URL – as both ends hash the same set of values, in the same order.

This will not be implemented currently as the gain is not very great compared to the unreliability/complexity.

3.2 Security - SSL for URLS
The major improvement to the URL security would be to SSL. We will suggest this to any site that wants to run LAMS and Moodle on their own servers and wants a higher level of security.

3.3 Security - WSS for Webservices
The major improvement to the webservice security would be to use WSS. This will give a proper way to know who (Moodle) is calling, password callback, etc. This may be useful when talking to other webservices.

We will suggest WSS to any site that wants to run LAMS and Moodle on their own servers and wants a higher level of security. This may require some extra development work on our end.

Failing WSS support, SSL would also be an improvement. However WSS is preferable due to its extra functionality, as well as allowing us to follow a standard.

3.4 Security - Callback to Trusted Server
To increase the comfort level that a URL or webservice call has come from the trusted server, we can add a call back to the originating server.

On the initial URL call (for a user) would include a generated key which is unique to this user’s Moodle session. The call will trigger the Login module in LAMS. As well as recreating and comparing the hash values, the Login module will also call a Moodle webservice, with the userid and the ticket. The Moodle server’s IP address and port would have been set up previously – it would not rely on a call from Moodle to specify the address. Moodle would confirm the userid / ticket combination. This is the “ticket” idea discussed initially for the Moodle integration.

While the user stays logged in, the call back to Moodle would not need to be called again. It is called only at the start of a session. 

A similar method would be used for webservice calls. The generated key would be passed to LAMS as one of the webservice parameters, and LAMS would call back to Moodle to confirm the key. To make this more efficient, later calls would keep using the same generated key, and LAMS would have to recognise that it has already authenticated that key and not call back to LAMS. After some period of time, LAMS and Moodle should arrange to generate and authenticate a new key.

The advantage of this call back is that it is an additional layer to the secret key encryption. A hacker would need to get both the secret key and would need to impersonate the Moodle server. If the hacker only had the secret key and the authenticated generated key they could pretend to be Moodle, but only for a limited period of time.

The two major disadvantages are as follows.

1. Performance would be reduced due to the number of webservice calls. It would add a delay to the login, which may make the system look like it is not responding.

2. Moodle would need to supply another webservice.

3.5 Caching User/LAMS Session details in Moodle
An alternative is to keep a cache of user/LAMS session details in Moodle. This would be a memory only cache - not recorded on disk. When a user tries to access a LAMS URL, the PHP URL "intercept" code would look up the cache.

If the user is found, then the call can be redirected as is and does not require the hash. If not, then the hash needs to be calculated and Step 2 occurs.

This option is more complex than the outline given above as it requires LAMS to return a session key back to Moodle (via a webservice) and for Moodle to keep the key. Also, when the user logs out of Moodle, Moodle will need to clear the user's entry from its cache of users and LAMS sessions. 

Preferably, the Moodle code to find the user in the cache of users and LAMS session keys should check that the entry in the cache for this Moodle user is in the same Moodle session as when the entry was placed in the cache. If it is different then the PHP code delete the old entry from the cache and calls LAMS with the id, date and hash to set up a new session. Hopefully this will deal with any problems due to the user closing the Moodle window and LAMS session timing out before the user logs into Moodle again.

This user caching option should only be used if calculating the hash turns out to be too computationally intense and is slowing down the system, or if we ever want to do an extra check with Moodle to make sure the user is known to Moodle (see “Callback To Trusted Server”).

As well as complexity, the major issue with Option (2) is that it requires a webservice call, which potentially will cause a delay in displaying the page on the first LAMS URL call.

For the moment, we will go with just calculating the hash every time, but this alternative is described in case the cache ever becomes favoured due to computational complexity of the hash or extra security that this could offer. 

3.6 Third Party SSO Solution

Use of a third party SSO system may be a possibility in the future.

An implementation of single sign-on using Moodle has been done using CAS (used by Yale University) and UPortal. However the take up of CAS across universities is quite low, so it would add to complexity of integration will very little gain.

If we do wish to go with a third party single sign-on product in the future, CAS it worth investigating as it supports a wide variety of technologies, including PHP and Java.0

For more details on CAS

· http://www.developertutorials.com/tutorials/java/single-sign-on
· http://www.yale.edu/tp/auth/usingcasatyale.html
· http://www.yale.edu/tp/auth/cas20.html
Another alternative is to look at the use of Shibboleth.

http://www.josso.org/ Java Open Single Sign-On Project. This also has Java and PHP support, and bundles with JBOSS 3.2.7 are available. JOSSO supports Strong Authentication using client certificates. However it requires that other SOAP access be disabled in PHP otherwise it conflicts with JOSSO. This appears to be an unreasonable restriction.
http://www.jboss.org/wiki/Wiki.jsp?page=SingleSignOn JBOSS includes single sign-on support using the Tomcat module (JBoss-3.2.3 onwards). This would support the single sign-on requirements required for other LAMS projects, but it would not support the Moodle.


























































































































































































































































































































































































































































































































































































































































































































