/* ====================================================================
* The Apache Software License, Version 1.1
*
* Copyright (c) 2002-2003 The Apache Software Foundation. All rights
* reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. The end-user documentation included with the redistribution, if
* any, must include the following acknowledgement:
* "This product includes software developed by the
* Apache Software Foundation (http://www.apache.org/)."
* Alternately, this acknowledgement may appear in the software itself,
* if and wherever such third-party acknowledgements normally appear.
*
* 4. The names "The Jakarta Project", "Commons", and "Apache Software
* Foundation" must not be used to endorse or promote products derived
* from this software without prior written permission. For written
* permission, please contact apache@apache.org.
*
* 5. Products derived from this software may not be called "Apache"
* nor may "Apache" appear in their names without prior written
* permission of the Apache Software Foundation.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
* ====================================================================
*
* This software consists of voluntary contributions made by many
* individuals on behalf of the Apache Software Foundation. For more
* information on the Apache Software Foundation, please see
*
A hash map that uses primitive ints for the key rather than objects.
* *Note that this class is for internal optimization purposes only, and may * not be supported in future releases of Jakarta Commons Lang. Utilities of * this sort may be included in future releases of Jakarta Commons Collections.
* * @author Justin Couch * @author Alex Chaffee (alex@apache.org) * @author Stephen Colebourne * @since 2.0 * @version $Revision$ * @see java.util.HashMap */ class IntHashMap { /** * The hash table data. */ private transient Entry table[]; /** * The total number of entries in the hash table. */ private transient int count; /** * The table is rehashed when its size exceeds this threshold. (The * value of this field is (int)(capacity * loadFactor).) * * @serial */ private int threshold; /** * The load factor for the hashtable. * * @serial */ private float loadFactor; /** *Innerclass that acts as a datastructure to create a new entry in the * table.
*/ private static class Entry { int hash; int key; Object value; Entry next; /** *Create a new entry with the given values.
* * @param hash The code used to hash the object with * @param key The key used to enter this in the table * @param value The value for this key * @param next A reference to the next entry in the table */ protected Entry(int hash, int key, Object value, Entry next) { this.hash = hash; this.key = key; this.value = value; this.next = next; } } /** *Constructs a new, empty hashtable with a default capacity and load
* factor, which is 20
and 0.75
respectively.
Constructs a new, empty hashtable with the specified initial capacity
* and default load factor, which is 0.75
.
Constructs a new, empty hashtable with the specified initial * capacity and the specified load factor.
* * @param initialCapacity the initial capacity of the hashtable. * @param loadFactor the load factor of the hashtable. * @throws IllegalArgumentException if the initial capacity is less * than zero, or if the load factor is nonpositive. */ public IntHashMap(int initialCapacity, float loadFactor) { super(); if (initialCapacity < 0) { throw new IllegalArgumentException("Illegal Capacity: " + initialCapacity); } if (loadFactor <= 0) { throw new IllegalArgumentException("Illegal Load: " + loadFactor); } if (initialCapacity == 0) { initialCapacity = 1; } this.loadFactor = loadFactor; table = new Entry[initialCapacity]; threshold = (int) (initialCapacity * loadFactor); } /** *Returns the number of keys in this hashtable.
* * @return the number of keys in this hashtable. */ public int size() { return count; } /** *Tests if this hashtable maps no keys to values.
* * @returntrue
if this hashtable maps no keys to values;
* false
otherwise.
*/
public boolean isEmpty() {
return count == 0;
}
/**
* Tests if some key maps into the specified value in this hashtable.
* This operation is more expensive than the containsKey
* method.
Note that this method is identical in functionality to containsValue, * (which is part of the Map interface in the collections framework).
* * @param value a value to search for. * @returntrue
if and only if some key maps to the
* value
argument in this hashtable as
* determined by the equals method;
* false
otherwise.
* @throws NullPointerException if the value is null
.
* @see #containsKey(int)
* @see #containsValue(Object)
* @see java.util.Map
*/
public boolean contains(Object value) {
if (value == null) {
throw new NullPointerException();
}
Entry tab[] = table;
for (int i = tab.length; i-- > 0;) {
for (Entry e = tab[i]; e != null; e = e.next) {
if (e.value.equals(value)) {
return true;
}
}
}
return false;
}
/**
* Returns true
if this HashMap maps one or more keys
* to this value.
Note that this method is identical in functionality to contains * (which predates the Map interface).
* * @param value value whose presence in this HashMap is to be tested. * @see java.util.Map * @since JDK1.2 */ public boolean containsValue(Object value) { return contains(value); } /** *Tests if the specified object is a key in this hashtable.
* * @param key possible key. * @returntrue
if and only if the specified object is a
* key in this hashtable, as determined by the equals
* method; false
otherwise.
* @see #contains(Object)
*/
public boolean containsKey(int key) {
Entry tab[] = table;
int hash = key;
int index = (hash & 0x7FFFFFFF) % tab.length;
for (Entry e = tab[index]; e != null; e = e.next) {
if (e.hash == hash) {
return true;
}
}
return false;
}
/**
* Returns the value to which the specified key is mapped in this map.
* * @param key a key in the hashtable. * @return the value to which the key is mapped in this hashtable; *null
if the key is not mapped to any value in
* this hashtable.
* @see #put(int, Object)
*/
public Object get(int key) {
Entry tab[] = table;
int hash = key;
int index = (hash & 0x7FFFFFFF) % tab.length;
for (Entry e = tab[index]; e != null; e = e.next) {
if (e.hash == hash) {
return e.value;
}
}
return null;
}
/**
* Increases the capacity of and internally reorganizes this * hashtable, in order to accommodate and access its entries more * efficiently.
* *This method is called automatically when the number of keys * in the hashtable exceeds this hashtable's capacity and load * factor.
*/ protected void rehash() { int oldCapacity = table.length; Entry oldMap[] = table; int newCapacity = oldCapacity * 2 + 1; Entry newMap[] = new Entry[newCapacity]; threshold = (int) (newCapacity * loadFactor); table = newMap; for (int i = oldCapacity; i-- > 0;) { for (Entry old = oldMap[i]; old != null;) { Entry e = old; old = old.next; int index = (e.hash & 0x7FFFFFFF) % newCapacity; e.next = newMap[index]; newMap[index] = e; } } } /** *Maps the specified key
to the specified
* value
in this hashtable. The key cannot be
* null
.
The value can be retrieved by calling the get
method
* with a key that is equal to the original key.
null
if it did not have one.
* @throws NullPointerException if the key is null
.
* @see #get(int)
*/
public Object put(int key, Object value) {
// Makes sure the key is not already in the hashtable.
Entry tab[] = table;
int hash = key;
int index = (hash & 0x7FFFFFFF) % tab.length;
for (Entry e = tab[index]; e != null; e = e.next) {
if (e.hash == hash) {
Object old = e.value;
e.value = value;
return old;
}
}
if (count >= threshold) {
// Rehash the table if the threshold is exceeded
rehash();
tab = table;
index = (hash & 0x7FFFFFFF) % tab.length;
}
// Creates the new entry.
Entry e = new Entry(hash, key, value, tab[index]);
tab[index] = e;
count++;
return null;
}
/**
* Removes the key (and its corresponding value) from this * hashtable.
* *This method does nothing if the key is not present in the * hashtable.
* * @param key the key that needs to be removed. * @return the value to which the key had been mapped in this hashtable, * ornull
if the key did not have a mapping.
*/
public Object remove(int key) {
Entry tab[] = table;
int hash = key;
int index = (hash & 0x7FFFFFFF) % tab.length;
for (Entry e = tab[index], prev = null; e != null; prev = e, e = e.next) {
if (e.hash == hash) {
if (prev != null) {
prev.next = e.next;
} else {
tab[index] = e.next;
}
count--;
Object oldValue = e.value;
e.value = null;
return oldValue;
}
}
return null;
}
/**
* Clears this hashtable so that it contains no keys.
*/ public synchronized void clear() { Entry tab[] = table; for (int index = tab.length; --index >= 0;) { tab[index] = null; } count = 0; } }