LAMS 1.1 Tool Contract

Chris Perfect

9th March 2005

Overview

This document describes the contract that must be fulfilled by a Tool for LAMS 1.1. The term contract is used deliberately as many of the requirements are more complex than just implementing an API: the structure, technology and above all behaviour of a Tool are important.

Differences between Tools in 1.1 and Tools in 1.0

The fundamental difference between the 1.0 concept of a Tool and the 1.1 concept of the Tool is in the way Tools relate to LAMS: in LAMS 1.0 and before Tools are core parts of LAMS whereas in 1.1 Tools are plug-ins to LAMS. The forces a major extension in the scope of a Tool: in the old version LAMS the core code took care of Authoring and Monitoring for Tools, the Tool itself only handled the runtime part of the Learner interaction. In 1.1 the Tool must provide the Authoring and Monitoring behaviours as well as Learning.

Tool Concepts

Tools do not know in general about LDs and LD structure.

Tool Meta Data

Tool Content (also what should a tool do if asked to access content that doesn't exist: create a copy of the default content)

Tool Session

Tool Signature

Grouped and Non-Grouped Tools

Tool Activity & Library

LAMS Deploy Structure

Without describing the structure of the LAMS application deployment it is impossible to understand the structure of a Tool. LAMS is deployed as a J2EE 1.3 compliant EAR in exploded format. This EAR contains a web module for the core lams functionalities (e.g. Author, Monitor, Learner, Admin etc.). The EAR also containts the lams.jar that contains the common LAMS code, and a number of third party library jars that are required by the core components.

<list of jars and versions>

Tool Structure

A Tool in 1.1 consists of 3 required elements:

A JDK 1.4 compliant jar file which includes the Tool's implementation of it's required API elements which is copied to the LAMS EAR (so LAMS can access it). This file will need to declare a dependency on the lams.jar and may declare a dependency on any of the other jars in the LAMS EAR: it should NOT include copies of these jars (note that this requires that if the Tool uses a library that LAMS already uses, Struts for example, then it MUST use the same version as LAMS does, or at least a compatible version). If this jar requires dependencies that are not part of the LAMS EAR then it may include them however LAMS CANNOT garauntee that this does not cause problems with other deployed Tools! In order to avoid name collisions between this Tool and LAMS (and any other deployed tools) the jar file should be called “tool_<tool signature>.jar”. Additionally tool creators should ensure that there are no name collisions between classes by using the Java standards for package and class naming.

A J2EE Compliant Web Application: this is deployed into the LAMS EAR as component web application. This web application may declare dependencies on it's API jar and/or the lams.jar or Naming collisions: Web Apps and contexts!

DB Data (tool record, library, activity)

Optional elements include:

Database tables (should use lams db with tool_<sig>_ naming convention, and code should use the tool-ds DataSource).

Other resources as required but should be carefully tested and attempts made to minimize potential conflicts.

Tool Behaviour

API

API elements, transactionality (TX_REQUIRED etc.)

Authoring

Authoring Behaviour and URL, Define Later, Run Offline, Lock on finish optio

Copy Content

Default Content

Preview URL (& Preview copy, delete)

Monitoring

Monitor Learner URL, Moderation and Contribute (run offline interactions for Teacher?)

Progress View URL

Define Later URL

Force Complete

Portfolio Export

Learning

Learner URL & Progress, (Define later wait page(s), run offline page(s), force complete as it effects learner: must kick them out, lock on finish or return)

Progress view URL

Portfolio Export

Compliance

A Tool does not have to implement all functionalities : there are different levels of compliance:

TEST: API+ Authoring (except define later, run offline), Learning (except portfolio export): used for testing only.

MINIMAL: + Monitoring (except define later, run offline).

FULL: +define later, run offline, portfolio export.

Standards

Use Struts,

Hibernate,

Spring (ref LAMS Spring config for SessionFactory etc.?),

MySQL 4.1

UTF-8

Transactions (JTA): not hard-coded e.g. Spring

Java coding and naming standards, avoid conflicts!

Use LAMS UI widgets and elements

Tool Certification

??

Installing and Uninstalling Tools

Ant script

1) LAMS db update transaction:

create tool record (set to invalid)
create default content id record
update tool record with default content id record
create library and activty record(s): set to invalid

2) get tool_id from db

3) get default content id from db using tool id

4) create tables in tool db

5) tool db update transaction
create base data and default content (using default content id)

6) Deploy tool war

7) move tool jar to ear level

8) Update lams db: set tool and library to valid

Install same tool sig will fail:

Uninstall – need to invalidate all activities/lds using tool

Upgrade totally upto Tool vendor

Future (e.g. unstructured use etc.)

Appendix A: Tool Meta Data

Tool Vendor details

Tool Full name and details

Tool Signature

Tool Content Compatibility

