LAMS Tool Deploy and Un-deploy

version 1.0

Chris Perfect

13th April 2005

Overview

This document outlines the processes for deploying and undeploying Tools in LAMS 1.1. An understanding of J2EE Applications, LAMS, Jboss, SQL and LAMS Tools are prerequisites for reading this document.

Deployment

Deploy Tasks (in order)

1. Create all DB artifacts (the lams_tool, lams_learning_library & lams_learning_activity records, tool tables and their data). Note that the records in the lams_* tables must be set to invalid!

2. Update the lams application.xml to include a web module for the Tool's web application.

3. Copy the Tool's war and jar files to the lams enterprise application directory.

4. Switch the records in the lams_* tables to valid so LAMS will start using them.

JBoss will take a little while to pick-up and deploy the Tool, during which time errors may occur so it is probably safest to stop the application server while doing this.

Implementation

The Deployer has been implemented as a standalone java application that can be run from the command line via a shell script (or similar). The main class is org.lamsfoundation.lams.tool.deploy.Deploy and it is configured via a deploy.properties file. Each task outlined above is implemented separately as org.lamsfoundation.lams.tool.deploy.Task objects. Each Task object has a setter for each piece of data it requires, an execute method to run it, and optionally getter methods to read output from the task. The Deploy class instantiates, configures and executes each Task in order and then retrieves any required output.

The Deploy class requires four sql scripts to run (the paths of which are set via the deploy.properties file). These are:

1. A script to insert a record for the tool in the lams_tool table. It is vital that this record be inserted with the valid_flag set to 0 (false) to prevent the Tool being used before it is fully deployed!

2. A script to insert a record for the tool in the lams_learning_library table. It is vital that this record be inserted with the valid_flag set to 0 (false) to prevent the Tool being used before it is fully deployed!

3. A script to insert a record in the lams_learning_activity table for the library and tool just created. Note that this will be a ToolActivity type record. Also note that this is a library activity and should therefore have a learning_library_id not a learning_design_id (see below).

4. A script to create the tool_* tables for this tool and insert any records in required (such as the default content).

Scripts 2-4 will require some data (essentially foreign keys) from records created from previous scripts in the sequence. In order to insert this data into the script a token replacement system is used (using the FileTokenReplacer class in the deploy package):

· The library script (script 2 above) should use ${tool_id} in place of the actual tool id value (which can't be known until the lams_tool record is created).

· The activity script (script 3 above) should use ${learning_library_id} and ${tool_id} for the learning_library_id and the tool_id respectively.

· The tool tables script (script 4 above) should use ${tool_id} and ${default_content_id} for the tool_id and the default_content_id.

The deployer will take care of extracting and replacing the right values.

The deployer is kept in a CVS module called lams_tool_deploy.

Un-deployment

Tasks (in order)

1. Set the records in the lams_* tables for this Tool to invalid: note that this also requires that all learning designs using activities that relate to the Tool are also set to invalid.

2. Modify the LAMS application.xml to remove the module for the Tool's web application.

3. Remove the Tool's war and jar files from the lams enterprise application directory.

4. Drop the Tool's tables.

As a user may be in the process of using the Tool it is best to shutdown the applications server first.

Implementation

There is no current implementation for the Undeployer but it is envisaged that it would be built similarly to the deployer as a Java executable configured via a properties file using the Task framework described above.

