LAMS 1.1 Code Naming Conventions and Coding Standards

Chris Perfect

10th December 2004







Version 1.0

1 Java Standards as recommended by Sun:
http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html
Basically use this where it is not overridden by following:

2 Interfaces:
Name: I<whatever>.java
Implementors should include the basic name of the interface (without the I), addition of descriptive words recommended if package name does not provide enough differentiation.
e.g.
differentiated by package name:
com.lamsinternational.lams.usermanagement.dao.IUserDAO
com.lamsintenrationla.lams.usermanagement.dao.hibernate.UserDAO

differentiated by descriptive term in name:
com.lamsinternational.lams.authentication.IAuthenticator
com.lamsinternational.lams.authentication.LDAPAuthenticator
com.lamsinternational.lams.authentication.LamsAuthenticator

Following this convention the suffix Impl is not necessary for implementors.

No special names for default implementors: in many cases default does not mean anything anyway (or may change over time or across different deployments). 

3 Exceptions:
Name: <whatever>Exception.java
Exceptions should be defined in the package where they are thrown, unless they are truly system wide in which case they should be declared in the exception package (see below).
For each service/component there should be a base exception that more specific exceptions extend (which allows code to handle these exceptions generally or specifically as it chooses).
Unchecked exceptions: Consider using unchecked exceptions (i.e. extending RuntimeException) when there is no sensible way of handling the exception (i.e. all we can do is log an error and show an error page).
In general prefer creating and throwing your own exceptions rather than forcing users of your code to know about java and third party exceptions (especially where there is an interface or service/component boundary involved): e.g don't throw things like IOException, HibernateException, catch them and throw your own specific exceptions.

4 Services (facades):
Name: <whatever>Service.java

5 Utilities:
General utilities should be relatively low level and simple (e.g. string formatters, file readers etc.) and probably limited to one class. These should go in the util package (see below). Anything more complicated probably deserves it's own package.

6 Packages:
General Package root is: 

com.lamsinternational.lams 

followed by the the functional area name (e.g. learningdesign, tools, lesson, etc.). 

The domain model classes go in this area. Service elements (including interfaces) go in the subpackage service, dao elements (including interfaces) in the subpackage dao. 
Under dao you will probably want to create subpackages for different implementations (e.g. hibernate). 

General utilities should go in 

com.lamsinternational.lams.util 

Any system wide exceptions (or root exceptions) should go in

com.lamsinternational.lams.exception

when we get down to the core modules each one should have it's own package in the lams_core CVS module (under src/java). 
e.g 

com.lamsinternational.lams.learning 
com.lamsinternational.lams.authoring 
com.lamsinternational.lams.monitoring 
com.lamsinternational.lams.admin 


Tools should have thier own seperate packages:
com.lamsinternational.lams.<mytool>

and exist in their own CVS modules (see sruvey tool for examples).


Please use common sense when applying these rules. If you are in any doubt over how to apply them then please come and see me.


